首页  技术文章  椭偏仪在位表征电化学沉积的系统搭建(二十三)- 全波段沉积过程的准在位测试分析-不同沉积时间所对应的

椭偏仪在位表征电化学沉积的系统搭建(二十三)- 全波段沉积过程的准在位测试分析-不同沉积时间所对应的

发布时间:2024-05-06 15:13:43 浏览量:106 作者:Alex

摘要

依据实验组前期对CU2O薄膜沉积的实验,选择-0.4mA进行两电极的恒流沉积,并用椭偏仪进行在位监测,每沉积180s后进行300nm到800nm的椭偏测试。即在沉积180s、360s、540s、720s、900s、1080s后分别进行了椭偏仪全谱测试,测试角度为70°。

正文


椭偏仪在位表征电化学沉积的系统搭建(二十三)- 全波段沉积过程的准在位测试分析-不同沉积时间所对应的椭偏参数


1、不同沉积时间所对应的椭偏参数Psi、Delta、R


图4-5是得到的不同沉积时间椭偏参数Psi和Delta及反射率R随着波长的变化,对比0s的图线,Psi、Delta、α及R值在整体上都是减小的,整体趋势较相似,但存在峰位的增加及峰位的移动。从图4-5(a、e)来看,与0s相比,不同沉积时间Psi值随波长的变化趋势的大致相同。不同沉积时间的Psi值在300nm到500nm波段变化较小,相较于0s时在330nm处出现峰位。沉积时间为180s时,波长在500-800nm的长波范围,其值从衬底的44°减小到30°左右。在沉积时间增加到540s、900s、1080s时,在约540nm处出现一个较明显的波包。不同时间测试得到的Psi值有变化,这也意味测试的基底表面发生了变化。图4-5(b、f)中显示椭偏参数Delta值随着时间的变化与椭偏参数Psi的趋势一致。在长波500-800nm的范围内得到的不同时间的Delta值从Au衬底所对应120°减小到70°附近。当沉积时间增加到540s、900s、1080s时,约在540nm处出现较明显的峰位。Delta值同样显示出测试基底表面发生了改变。图4-5(c、g)是吸收系数α随不同沉积时将随波长的变化,和0s相比,整体上变化趋势相似,但是在数值及吸收波包上存在变化。在300-500nm波段不同沉积时间变化趋势及数值比较接近,且都在大约330nm处出现新的吸收波包。在500-800nm波段,540s、900s、1080s都在500-550nm波段出现新的波包且随着时间的增加存在红移现象。数值的变化及新的吸收波包的出现,可能是由于沉积的CU2O带来的,有待进一步验证。图4-5(d、h)中显示反射系数R值随着时间的变化,其变化规律和吸收率相似。当沉积时间为180s的时候,R的值大约从Au基底的1附近降为0.3左右,在波长为300-500nm之间存在两个波包(330nm,400nm),在波长为500-800nm之间存在两个波包(540nm,630nm)。当沉积时间为360s时与180s的曲线很接近,但是在长波500-800nm减为1个较明显的波包,大约在600nm附近。当沉积时间增加到540s时,在500nm-800nm范围出现两个比180s更大的波包(510nm,660nm)。到720s时,R值随波长的变化与360s一致。到900s和1080s时,R值随波长的变化与540s一致,但500nm到800nm的两个波包峰位有所变化。总体上看,在短波段R值随着沉积时间的变化十分微小且曲线比较光滑,但是在长波段会随着沉积时间的不同上下波动且曲线本身也存在波动。说明长波对基底表面变化更敏感,对测试信息影响更大。对比文献中Au的反射率知道其在长波段的反射率接近1与0s时的R相似,故认为在没有沉积之前整个池体椭偏数据主要反应的是Au基底的信息。与沉积0s相比,不同沉积时间的反射率R减小,说明Au衬底的信息减少,这是由于CU2O的沉积导致。


图4-5不同沉积时间(180s,360s,720s,1080s)的椭偏数据:

(a,e)Psi;

(b,f)Delta;

(c,g)α;

(d,h)R


了解更多椭偏仪详情,请访问上海宝马bm555线路的官方网页:

/three-level-56.html


更多详情请联系宝马bm555线路/欢迎直接联系宝马bm555线路

关于宝马bm555线路:

宝马bm555线路是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

您可以通过我们宝马bm555线路的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。


参考文献

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陈篮,周岩. 膜厚度测量的椭偏仪法原理分析[J]. 大学物理实验, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦杨.椭偏仪在位表征电化学沉积的系统搭建.云南大学说是论文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry[J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李广立. 氧化亚铜薄膜的制备及其光电性能研究[D]. 西南交通大学, 2016.

[25] 董金矿. 氧化亚铜薄膜的制备及其光催化性能的研究[D]. 安徽建筑大学, 2014.

[26] 张桢. 氧化亚铜薄膜的电化学制备及其光催化和光电性能的研究[D]. 上海交通大学材料科 学与工程学院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的电化学制备及其光电化学性能的研究[D]. 云南大学物理与天文学院,2019.

阅读延伸

展示全部  up